Votes

Stereospecific Total Syntheses of Sphingosine and Its Analogues from **L-Serine**

Hideki Azuma,* Seizo Tamagaki, and Kenji Ogino*

Department of Bioapplied Chemistry, Faculty of Engineering, Osaka City University, Sugimoto 3-3-138, Sumiyoshi-ku, Osaka 558-8585, Japan

Received September 14, 1999

Introduction

Glycosphingolipids and sphingomyelins that are biomembrane components serve physiologically important roles in bioorganisms.¹ The lipophilic ceramide tail, a long chain acid amide derivative of the sphingosine amino alcohol moiety, acts as a membrane anchor, while the hydrophilic headgroup such as saccharide or phosphate, which is predominantly located on the external surface of the membrane, is associated with the molecular recognition process. Physiologically, sphingosines have been reported to function as a positive regulator of cell growth in Swiss 3T3 fibroblast² and a potent inhibitor of protein kinase C in vitro.³ Recently, it has been suggested that sphingosines or their related lipids were used as a potent precursor for the biosynthesis of a sleep-inducing substance.⁴ Until now, however, sphingosines,⁵ dihydrosphingosines,⁶ and phytosphingosines⁷ have been independently synthesized by many workers from Lserine or various sugars by different methods. We present here a sophisticated method for synthesizing three different types of sphingosines with 18 carbon atoms passing through the (Z)-olefin **2** as the common intermediate.

Results and Discussion

(i) Dihydrosphingosines. The synthetic approach to dihydrosphingosines is outlined in Scheme 1. Garner's

^a C₁₅H₃₁PPh₃Br, LHMDS, -78 °C. ^b m-CPBA, room temperature. ^c Excess LiAlH₄, 0 °C. ^d CF₃CO₂H, room temperature, then Ac₂O, DMAP, room temperature.

protected serine aldehyde 1 is the starting material of the present synthesis.⁸ First, we have attempted to prepare geometrically pure (Z)-2 olefin from this aldehyde under the Wittig reaction conditions. However, the ordinary Wittig olefination of 1 employing n-BuLi as a base with pentadecyltriphenylphosphonium bromide (C₁₅H₃₁PPh₃Br) resulted in only a low yield of the desired olefin. Previously, Dondoni and co-workers reported the Wittig olefination of a sterically hindered serine-derived aldehyde with tetradecyltriphenylphosphonium bromide (3.2 equiv);^{5a} the use of 2.8 equiv of lithium hexamethyldisilazide (LHMDS freshly prepared from n-BuLi and $NH(SiMe_3)_2)$ as the base produced a mixture of (Z)- and (E)-isomers in 80-84% isolated yield. Similarly, by using the $C_{15}H_{31}PPh_3Br/LHMDS/1$ (mole ratio = 2.3:2.1:1) combination system, we have obtained a 90:10 mixture of (Z)- and (\check{E})-isomers in 83% total yield based on ¹H NMR analysis after purification by column chromatography. Use of sodium hexamethyldisilazide (NaHMDS) as a base did not increase the population of the Z form;¹³

^{(1) (}a) Hakamori, S. In Handbook of Lipid Research: Sphingolipid Biochemistry; Kanfer, J. N., Hakomori, S., Ed.; Plenum Press: New York, 1983; Vol. 3, pp 1–150. (b) Kolter, T.; Sandhoff, K. Angew. Chem., Int. Ed. Engl. **1999**, *38*, 1532.

⁽²⁾ Zhang, H.; Buckley, N. E.; Gibson K.; Spiegel, S. J. Biol. Chem. **1990**, *265*, 76.

⁽³⁾ Merrill, A. H., Jr.; Nimkar, S.; Menaldino, D.; Hannun, Y. A.; Loomis, C.; Bell, R. M.; Tyagi, S. R.; Lambeth, J. D.; Stevens, V. L.; Hunter, R.; Liotta, D. C. *Biochemistry* **1989**, *28*, 3138.

⁽⁴⁾ Kolter, T.; Sandlhoff, K. Angew. Chem., Int. Ed. Engl. 1995, 34, 2363

^{(5) (}a) Dondoni, A.; Perrone, D.; Turturici, E. J. Chem. Soc., Perkin Trans. 1 1997, 2389. (b) Zimmermann, P.; Schmidt, R. R. Liebigs Ann. Chem. 1988, 663. (c) Herold, P. Helv. Chim. Acta 1988, 71, 354. (d) Garner, P.; Park, J. M.; Malecki, E. J. Org. Chem. **1968**, *53*, 4395. (e) Nimkar, S.; Menaldino, D.; Merrill, A. H.; Liotta, D. *Tetrahedron Lett.* 1988, 29, 3037

^{(6) (}a) Mori, K.; Uenishi, K. Liebigs Ann. Chem. 1994, 41. (b) Yoshida, J.; Nakagawa, M.; Seki, H.; Hino, T. *J. Chem. Soc., Perkin Trans.* 1 **1992**, 343. (c) Roush, W. R.; Adam, M. A. *J. Org. Chem.* **1985**, *50*, 3752. (d) Reist, E. J.; Christie, P. H. *J. Org. Chem.* **1970**, *10*, 3521. (7) (a) Dondoni, A.; Fantin, G.; Fogagnolo, M.; Pedrini, P. *J. Org. (7)* (a) Dondoni, A.; Fantin, G.; Fogagnolo, M.; Pedrini, P. *J. Org. (7)* (a) Dondoni, A.; Fantin, G.; Fogagnolo, M.; Pedrini, P. J. Org. (7) (a) Dondoni, A.; Fantin, G.; Fogagnolo, M.; Pedrini, P. J. Org. (7) (a) Dondoni, A.; Fantin, G.; Fogagnolo, M.; Pedrini, P. J. Org. (7) (a) Dondoni, A.; Fantin, G.; Fogagnolo, M.; Pedrini, P. J. Org. (7) (a) Dondoni, A.; Fantin, G.; Fogagnolo, M.; Pedrini, P. J. Org. (7) (a) Dondoni, A.; Fantin, G.; Fogagnolo, M.; Pedrini, P. J. Org. (7) (a) Dondoni, A.; Fantin, G.; Fogagnolo, M.; Pedrini, P. J. Org. (7) (a) Dondoni, A.; Fantin, G.; Fogagnolo, M.; Pedrini, P. J. Org. (7) (a) Dondoni, A.; Fantin, G.; Fogagnolo, M.; Pedrini, P. J. Org. (7) (a) Dondoni, A.; Fantin, G.; Fogagnolo, M.; Pedrini, P. J. Org. (7) (a) Dondoni, A.; Fantin, G.; Fogagnolo, M.; Pedrini, P. J. Org. (7) (a) Dondoni, A.; Fantin, G.; Fogagnolo, M.; Pedrini, P. J. Org. (7) (a) Dondoni, A.; Fantin, G.; Fogagnolo, M.; Pedrini, P. J. Org. (7) (a) Dondoni, A.; Fantin, G.; Fogagnolo, M.; Pedrini, P. J. Org. (7) (a) Dondoni, A.; Fantin, G.; Fogagnolo, M.; Pedrini, P. J. Org. (7) (a) Dondoni, A.; Fantin, G.; Fogagnolo, M.; Pedrini, P. J. Org. (7) (a) Dondoni, A.; Fantin, G.; Fogagnolo, M.; Pedrini, P. J. Org. (7) (a) Dondoni, A.; Fantin, G.; Fogagnolo, M.; Pedrini, P. J. Org. (7) (a) Dondoni, A.; Fantin, G.; Fogagnolo, M.; Pedrini, P. J. Org. (7) (a) Dondoni, A.; Fantin, G.; Fogagnolo, M.; Pedrini, P. J. Org. (7) (a) Dondoni, A.; Fantin, G.; Fogagnolo, M.; Pedrini, P. J. Org. (7) (a) Dondoni, A.; Fantin, G.; Fogagnolo, M.; Pedrini, P. J. Org. (7) (a) Dondoni, A.; Fantin, G.; Fogagnolo, M.; Pedrini, P. J. Org. (7) (a) Dondoni, A.; Fantin, G.; Fogagnolo, M.; Pedrini, P. J. Org. (7) (a) Dondoni, A.; Fantin, G.; Fogagnolo, M.; Pedrini, P. J. Org. (7) (a) Dondoni, A.; Fantin, G.; Fan

Chem. **1990**, *55*, 1439. (b) Sugiyama, S.; Honda, M.; Komori, T. Liebigs Ann. Chem. **1988**, 619. (c) Mulzer, J.; Brand, C. *Tetrahedron* **1986**, *42*, 5961. (d) Sugiyama, S.; Honda, M.; Komori, T. *Liebigs Ann. Chem.* 1990. 1069.

^{(8) (}a) Garner, P.; Park, J. M. J. Org. Chem. 1987, 52, 2361. (b) Dondoni, A.; Perrone, D. Synthesis 1997, 527.

⁽⁹⁾ Roush, W. R.; Straub, J. A.; Brown, R. J. J. Org. Chem. 1987, 52. 5127.

⁽¹⁰⁾ Eliel, E. L.; Rerick, M. N. *J. Am. Chem. Soc.* **1960**, *82*, 1362. (11) Kobayashi, J.; Ishibashi, M.; Nakamura, H.; Hirata, Y.; Ya-

⁽¹²⁾ Kobyashi, S., Binbushi, M., Experientia 1988, 44, 800.
(12) Sharpless, K. B.; Lauer, R. F. J. Am. Chem. Soc. 1973, 95, 2697.
(13) (a) Viala, J.; Santelli, M. Synthesis 1988, 395. (b) Bestmann, H. J.; Stransky, W.; Vostrowsky, O. Chem. Ber. 1976, 109, 1694.

Table 1. Solvent Effect for the Oxidation^a of (Z)-2 with
m-CPBA

solvent	reaction time	total yield ^b (%)	A:B ratio ^c
benzene	4 hours	87.2	82:18
CH_2Cl_2	1 day	91.5	70:30
tert-BuOH	2 days	86.7	89:11
THF	2 days	89.3	92:8

^{*a*} Method: *m*-CPBA (2.5 equiv), Na₂HPO₄ (2.5 equiv), room temperature. ^{*b*} Obtained by column chromatography. ^{*c*} Analyzed by ¹H NMR.

no significant improvement in selectivity was observed (Z|E = 91:9) with slightly decreased yield to 74%. Nevertheless, column chromatographic purification and isolation with *n*-hexane-EtOAc (20:1) as an eluent, gave pure (*Z*)-**2** in 66% yield. The (*Z*)-olefin **2** thus formed may be synthetically more valuable than the corresponding (*E*)-olefin, as will be substantiated below, because the former is more susceptible to steric hindrance toward attacking reagents due to its bulky *N*-Boc group than the latter.

Next, the epoxidation of each olefin using 2 equiv of *m*-CPBA was examined in various solvents in the presence of 2 equiv of Na₂HPO₄ as the base. Addition of the phosphate was effective in avoiding the unfavorable acidcatalyzed ring-opening of the epoxide once formed. Little or no diastereoselectivity was observed for (*E*)-2 in a wide range of solvents tested, while remarkably high diastereoselectivity was observed for (*Z*)-2. Table 1 indicates that THF is the best of choice among the solvents, in which 3 and 4 were formed with a 92:8 ratio. The epoxide 3 and 4 were readily separated by column chromatography with *n*-hexane-diethyl ether (4:1) and obtained in 84% and 4% yields, respectively. Incidentally, the epoxidation of (*Z*)-2 employing the Mo(CO)₆-TBHP system failed due probably to the bulkiness of the oxidant.⁹

The epoxide 3 thus formed was reduced with LiAlH₄ in diethyl ether at 0 °C to give rise to the desired 3-hydroxy compound 5 with an excellent regioselectivity, demonstrating that the less hindered carbon atom of the epoxide is vulnerable to the preferred attack of the relatively small hydride anion.¹⁰ The removal of the protective N-Boc group of 5 with trifluoroacetic acid, followed by acetylation, a technique for easy purification and characterization of the product, afforded N.O.Otriacetyl-D-erythro-dihydrosphingosine 7 in 83% yield. The overall yield based on 1 was 39%. The free form of the triacetyl compound 7 is an amino component of symbioramide, an activator of a sarcoplasmic reticulum Ca²⁺-ATPase.¹¹ The *threo*-isomer **8** could also be prepared from 4 in the same manner (see the Experimental Section for the detail).

(ii) Sphingosines. The epoxide **3** was converted to the allylic alcohol **9**' according to the method described by Sharpless¹² (Scheme 2); treatment of **3** with diphenyl diselenide (PhSeSePh) and sodium tetrahydroborate gave the hydroxy selenide **9**, which was the sole product detected by ¹H NMR spectroscopy after purification of the reaction mixture by column chromatography. The subsequent oxidation of the crude hydroxyselenide **9** with 30% hydrogen peroxide resulted in a comparatively low selectivity of a 9:1 mixture of (*E*)- and (*Z*)-allylic alcohols, irrespective of Sharpless' rule that the alkyl selenoxide will exclusively decompose to the (*E*)-allylic alcohol.¹² Probably, such a low observed selectivity appears to be attributed to too large a steric hindrance by the large

 a PhSeSePh, NaBH₄, reflux. b 30% H₂O₂, room temperature. c CF₃CO₂H, room temperature, then Ac₂O, DMAP, room temperature. d 30% H₂O₂, NaHCO₃, room temperature.

 a N-methylmorpholine N-oxide hydrate, OsO4, room temperature. b CF_3CO2H, room temperature, then Ac2O, DMAP, room temperature.

N-Boc group around the selenoxide moiety. Therefore, the smaller *N*-Ac derivative **11** was substituted for the *N*-Boc derivative **9** for the sake of selective elimination of the selenoxide group; actually, when the *N*-Ac derivative **11** was oxidized with 30% hydrogen peroxide, followed by facile PhSeOH-elimination, *N*, *O*, *O*-triacetyl-D-*erythro*-sphingosine **13** was obtained in 31% isolated yield, as expected. Attempts to prepare the *threo*-isomer **14** from **4** entirely failed because no target molecule **10** could be detected in the reaction mixture.

(iii) Phytosphingosines. To obtain the 3,4-diol 15, we have examined the osmylation of the olefin (Z)-2 (Scheme 3); OsO₄/*N*-methylmorpholine *N*-oxide^{7c} converted (Z)-2 into a mixture of diols 15 and 16, which were readily separated by column chromatography using *n*-hexane–EtOAc (3:1) in 55% and 19% yields, respectively. The isolated 15 and 16 were deprotected and then acetylated to provide *N*,*O*,*O*,*O*-tetraacetyl-D-*ribo*-phyto-

sphingosine **17** and *arabino*-isomer **18**, respectively. The overall yield of **17** from **1** was 27%.

Conclusions

Three different types of sphingosine derivatives, **7**, **13**, and **17**, were prepared from L-serine through the common intermediate (\mathbb{Z})-**2**. It is found for the first time that both the oxidation of (\mathbb{Z})-**2** with *m*-CPBA or OsO₄/*N*-methyl-morpholine *N*-oxide and the epoxy-ring opening reaction with LiAlH₄ or PhSe⁻ take place stereoselectively; these high selectivities appear to arise from the presence of a sterically encumbered *N*-Boc group near the reacting centers.

Experimental Section

All the materials were obtained commercially (guaranteed reagent grade) and used without further purification. All solvents were freshly distilled under nitrogen before use; THF and diethyl ether were distilled from LiAlH₄; CH₂Cl₂ was distilled from P₂O₅; EtOH was distilled from CaO. ¹H and ¹³C NMR spectra were recorded in CDCl₃, C₆D₆ or DMSO-*d*₆ solution with TMS as an internal standard. Column chromatography was performed on silica gel (Wakogel C-200).

(R,Z)-2-[(tert-Butoxycarbonyl)amino]-1,2-O,N-isopropylideneoctadec-3-en-1-ol ((Z)-2). To a solution of 1,1,1,3,3,3hexamethyldisilazane (8.13 g, 50.4 mmol) in dry THF (100 mL) was added n-BuLi (1.6 M in n-hexane, 31.5 mL) at room temperature (LHMDS solution). The LHMDS solution was treated dropwise with pentadecyltriphenylphosphonium bromide (30.6 g, 55.3 mmol) in dry THF (100 mL). The resulting dark red solution was added dropwise to a solution of Garner's aldehyde⁸ 1 (5.52 g, 24 mmol) in dry THF (50 mL) at -78 °C. After stirring overnight at room temperature, the mixture was poured into an ice-cooled 1 M HCl solution and extracted with EtOAc. After drying with Na₂SO₄, the solvent was concentrated and the residue was purified by column chromatography with chloroform to give a mixture of (Z)- and (E)-isomers in a 9:1 ratio (by ¹H NMR analysis). Further purification by column chromatography with n-hexane-EtOAc (20:1) gave the major isomer (Z)-2 as a colorless oil (6.78 g, 66.4%).

Compound (2)-2: $[\alpha]^{25}_{D} = +55.9^{\circ}$ (*c* 1.72, CHCl₃); IR (CHCl₃) 2975, 2855, 1701, 1460, 1385, 1366, 1252, 1176, 1096, 1037, 851 cm⁻¹; ¹H NMR (400 MHz, C₆D₆, 75 °C) δ 0.91 (t, 3 H, *J* = 6.8 Hz), 1.34 (s, 24 H), 1.44 (s, 9 H), 1.60 (s, 3 H), 1.70 (s, 3 H), 2.12 (brs, 2 H), 3.55 (dd, 1 H, *J* = 3.4, 8.8 Hz), 3.85 (dd, 1 H, *J* = 6.3, 8.8 Hz), 4.61 (brs, 1 H), 5.37–5.52 (m, 2 H); ¹³C NMR (100 MHz, C₆D₆, 75 °C) δ 14.0, 22.9, 24.8, 27.1, 27.7, 28.5, 29.6, 29.8, 29.9, 30.0, 30.1, 32.2, 55.0, 69.1, 77.5, 79.2, 130.9, 152.0. HRMS (FAB, direct) Calcd for C₂₆H₄₉NO₃: [M + H]⁺ 424.3791. Found: 424.3779 (13%). Anal. Calcd: C, 73.71; H, 11.66; N, 3.31. Found: C, 73.71; H, 11.68; N, 3.27.

Compound (E)-2: $[\alpha]^{25}_{D} = -4.63^{\circ}$ (*c* 2.1, CHCl₃); IR (CHCl₃) 2926, 2855, 1701, 1460, 1385, 1366, 1254, 1178, 1099, 1057, 964, 851 cm⁻¹; ¹H NMR (400 MHz, C₆D₆, 75 °C) δ 0.91 (t, 3 H, J =6.8 Hz), 1.33 (s, 24 H), 1.46 (s, 9 H), 1.57 (s, 3 H), 1.72 (s, 3 H), 2.0 (dt, 2 H, J = 6.8, 6.3 Hz), 3.56 (dd, 1 H, J = 3.4, 8.8 Hz), 3.78 (dd, 1 H, J = 6.0, 8.8 Hz), 4.20 (brs, 1 H), 5.49 (dd, 1 H, J =7.2, 15.4 Hz), 5.62 (dt, 1 H, J = 15.4, 6.3 Hz). HRMS (FAB, direct) Calcd: [M + H]⁺ 424.3791. Found: 424.3787 (11%). Anal. Calcd for C₂₆H₄₉NO₃: C, 73.71; H, 11.66; N, 3.31. Found: C, 73.64; H, 11.7; N, 3.25.

(2.S,3.S,4.R)-2-[(*tert*-Butoxycarbonyl)amino]-1,2-*O*,*N*-isopropylidene-3,4-epoxyoctadecan-1-ol (3). To a solution of (*Z*)-2 (4.24 g, 10 mmol) and Na₂HPO₄ (3.55 g, 25 mmol) in dry THF (100 mL) was added *m*-CPBA (4.31 g, 25 mmol) at 0 °C. The mixture was stirred for 1 h and then 2 days at room temperature. The solution was treated with saturated aqueous NaHCO₃ and Na₂S₂O₃ and extracted with Saturated aqueous NaHCO₃ and Na₂S₂O₃ and extracted with CH₂Cl₂. The organic layer was dried with Na₂SO₄ and concentrated to give a residue containing the epoxide **3** and the (2.S,3*R*,4.S)-isomer **4** in a 92:8 ratio (by ¹H NMR analysis), which was purified by column chromatography with *n*-hexane-diethyl ether (4:1), affording **3** (3.67 g, 83.5%) and **4** (170 mg, 3.9%) as solids, respectively. **Compound 3:** mp 43 °C; $[\alpha]^{25}_{D} = +33.4^{\circ}$ (*c* 2.0, CHCl₃); IR (KBr) 2920, 2851, 1699, 1472, 1387, 1366, 1167, 1103, 1059, 868 cm⁻¹; ¹H NMR (400 MHz, C₆D₆, 75 °C) δ 0.91 (t, 3 H, J = 6.8 Hz), 1.33 (s, 24 H), 1.41 (s, 9 H), 1.49 (s, 3 H), 1.50–1.60 (m, 2 H), 1.65 (s, 3 H), 2.89–2.93 (m, 1 H), 3.0 (dd, 1 H, J = 3.9, 7.8 Hz), 3.72–3.77 (m, 1 H), 3.76 (t, 1 H, J = 6.3 Hz), 4.13 (dd, 1 H, J = 8.3, 2.0 Hz). HRMS (FAB, direct) Calcd for C₂₆H₄₉NO₄: [M + H]⁺ 440.3740. Found: 440.3736 (9%). Anal. Calcd: C, 71.03; H, 11.23; N, 3.19. Found: C, 70.9; H, 11.25; N, 3.16.

Compound 4: mp 39 °C; $[\alpha]^{25}_{D} = +10.5^{\circ}$ (*c* 2.0, CHCl₃); IR (KBr) 2920, 2855, 1699, 1474, 1391, 1366, 1252, 1092, 1057, 845 cm⁻¹; ¹H NMR (400 MHz, C₆D₆, 75 °C) δ 0.89 (t, 3 H, *J* = 6.8 Hz), 1.29 (s, 26 H), 1.54 (s, 9 H), 1.58 (s, 3 H), 1.73 (s, 3 H), 2.54–2.58 (m, 1 H), 2.87 (dd, 1 H, *J* = 4.4, 7.6 Hz), 3.57 (dd, 1 H, *J* = 7.8, 1.6 Hz), 3.69–3.76 (m, 2 H). HRMS (FAB, direct) Calcd for C₂₆H₄₉NO₄: [M + H]⁺ 440.3740. Found: 440.3725 (12%). Anal. Calcd: C, 71.03; H, 11.23; N, 3.19. Found: C, 71.04; H, 11.22; N, 3.07.

(2S,3R)-2-[(tert-Butoxycarbonyl)amino]-1,2-O,N-isopropylideneoctadecane-1,3-diol (5). To a solution of the epoxide 3 (400 mg, 0.9 mmol) in dry diethyl ether (50 mL) was added LiAlH₄ (140 mg, 3.6 mmol) at 0 °C. The mixture was stirred for 1 h at 0 °C under N₂. The reaction mixture was cooled at -78°C, and EtOAc was added to quench. The resulting white emulsion was poured into an ice-cooled 1 M HCl solution and extracted with EtOAc; the organic layer was dried with Na₂SO₄ and concentrated. Purification by column chromatography with *n*-hexane–EtOAc (5:1) gave **5** (340 mg, 85.5%) as an oil: $[\alpha]^{25}$ _D $= -12.6^{\circ} (c 2.51, \text{CHCl}_3) \{ \text{lit.}^{6d} [\alpha]^{20}_{\text{D}} = -12.7^{\circ} (c 1.09, \text{CHCl}_3) \};$ ¹H NMR (400 MHz, C₆D₆, 75 °C) δ 0.90 (t, 3 H, J = 6.8 Hz), 1.33 (s, 28 H), 1.42 (s, 9 H), 1.46 (s, 3 H), 1.63 (s, 3 H), 3.67 (dd, 1 H, J = 6.8, 8.8 Hz), 3.79–3.90 (m, 3 H); ¹³C NMR (100 MHz, C₆D₆, 75 °C) δ 14.0, 22.9, 24.1, 26.4, 26.8, 28.4, 29.6, 29.9, 30.0, 32.2, 33.9, 62.7, 64.5, 72.6, 80.0, 94.3. MS (FAB, direct) Calcd for $C_{26}H_{51}NO_4$: $[M + H]^+$ 442.4. Found: 442.5 (11%).

(2.5,3.5)-2-[(*tert*-Butoxycarbonyl)amino]-1,2-*O*,*N*-isopropylideneoctadecane-1,3-diol (6). The reaction was carried out as described above starting from 4 (300 mg, 0.68 mmol), although the amount of adding LiAlH₄ was 2-fold equimolar. Purification by column chromatography with *n*-hexane–EtOAc (5:1) gave 6 (240 mg, 79.9%) as an oil: $[\alpha]^{25}_{D} = -36.9^{\circ}$ (*c* 1.7, CHCl₃); IR (CHCl₃) 3450, 2924, 2855, 1701, 1670, 1394, 1366, 1258, 1175, 1109, 1061 cm⁻¹; ¹H NMR (400 MHz, C₆D₆, 75 °C) δ 0.91 (t, 3 H, *J* = 6.8 Hz), 1.33 (s, 28 H), 1.40 (s, 9 H), 1.47 (s, 3 H), 1.65 (s, 3 H), 3.65–3.73 (m, 2 H), 3.80–3.90 (m, 2 H); ¹³C NMR (100 MHz, C₆D₆, 75 °C) δ 14.0, 22.9, 24.2, 25.9, 27.1, 28.3, 29.6, 30.0, 30.1, 32.2, 34.3, 62.7, 65.0, 75.5, 80.3, 94.3. HRMS (FAB, direct) Calcd for C₂₆H₅₁NO₄: [M + H]⁺ 441.3818. Found: 442.3896 (11%). Anal. Calcd: C, 70.70; H, 11.64; N, 3.17. Found: C, 70.39; H, 11.63; N, 3.17.

N,O,O-Triacetyl-D-erythro-dihydrosphingosine (7). To the protected sphingosine 5 (200 mg, 0.45 mmol) was added a solution of trifluoroacetic acid (1 mL) and water (0.3 mL). After 1 h, the solvent was evaporated in vacuo and a saturated aqueous NaHCO₃ was added. The mixture was extracted with EtOAc, dried with Na₂SO₄, and concentrated. To the residue dissolved in pyridine (10 mL) were added DMAP (170 mg, 1.35 mmol) and acetic anhydride (230 mg, 2.25 mmol). After 1 day of stirring, the solvent was removed in vacuo. Saturated aqueous NaHCO₃ was added to the residue, and the mixture was extracted with diethyl ether. The organic layer was dried with Na₂SO₄ and concentrated. Purification by column chromatography with *n*-hexane–EtOAc (5:1) gave 7 (160 mg, 83.1%) as a solid: mp 97-98 °C (lit.^{6d} mp 90-93 °C and lit.^{6c} mp 93-94 °C); $[\alpha]^{25}_{D} = +17.4^{\circ} (c \, 1.0, \text{CHCl}_3) \{\text{lit.}^{6d} [\alpha]^{19}_{D} = +16.0^{\circ} (c \, 0.5, \text{CHCl}_3)$ and lit.^{6c} $[\alpha]^{23}_{D} = +17.5^{\circ}$ (c 1.0, CHCl₃)}; ¹H NMR (400 MHz, CDCl₃) δ 0.87 (t, 3 H, J = 7.0 Hz), 1.24 (s, 26 H), 1.59 (brs, 2 H), 2.00 (s, 3 H), 2.06 (s, 3 H), 2.07 (s, 3 H), 4.05 (dd, 1 H, J = 3.9, 11.2 Hz), 4.35-4.41 (m, 1H), 4.90 (dt, 1 H, J = 7.3, 5.4 Hz), 5.96(d, 1 H, J = 9.3 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 14.1, 20.8, 21.0, 22.6, 23.3, 25.3, 29.3, 29.4, 29.5, 29.6, 31.4, 31.9, 50.4, 62.6, 73.9, 169.7, 170.9, 171.1. MS (FAB, direct) Calcd for $C_{24}H_{45}$ NO₅: [M + H]⁺ 428.3. Found: 428.4 (83%).

N,*O*,*O*-**Triacetyl**-L-*threo*-**dihydrosphingosine (8).** The reaction was carried out as described above for **7**, starting from **6** (160 mg, 0.32 mmol). Purification by column chromatography with *n*-hexane–EtOAc (5:1) gave **8** (160 mg, 83.1%) as a solid:

mp 43–44 °C; $[\alpha]^{25}{}_{\rm D} = -6.86^{\circ}$ (*c* 2.0, CHCl₃); IR (KBr) 3304, 2920, 2851, 1746, 1653, 1558, 1541, 1369, 1244, 1047 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.85 (t, 3 H, J = 6.8 Hz), 1.22 (s, 26 H), 1.50–1.57 (m, 2 H), 2.00 (s, 3 H), 2.03 (s, 3 H), 2.05 (s, 3 H), 4.00 (d, 2 H, J = 5.7 Hz), 4.37 (ddt, 1 H, J = 9.3, 3.4, 6.4 Hz), 5.04 (ddd, 1 H, J = 3.9, 7.3, 5.9 Hz), 5.74 (d, 1 H, J = 9.3 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 14.0, 20.7, 20.9, 22.6, 23.1, 25.1, 29.2, 29.3, 29.4, 29.6, 29.6, 31.2, 31.8, 49.9, 63.2, 72.3, 170.0, 170.3, 170.7. HRMS (FAB, direct) Calcd for C₂₄H₅NO₅: [M + H]⁺ 428.3376. Found: 428.3369 (72%). Anal. Calcd: C, 67.41; H, 10.61; N, 3.28. Found: C, 67.38; H, 11.61; N, 3.24.

(2S,3S,4S)-2-[(tert-Butoxycarbonyl)amino]-1,2-O,N-isopropylidene-4-phenylselenyloctadecane-1,3-diol (9). To a solution of diphenyl diselenide (160 mg, 0.51 mmol) in absolute ethanol (3 mL) was added sodium tetrahydroborate (42 mg, 1.11 mmol, evolution of H₂) at room temperature. The mixture was stirred under N₂; the yellow solution turned colorless. Then a solution of 3 (400 mg, 0.91 mmol) in absolute ethanol (3 mL) was added dropwise and the mixture was heated under reflux for 2 h. After cooling to room temperature, the mixture was poured into an ice-cooled 1 M HCl solution and extracted with diethyl ether. After drying with Na₂SO₄, the solvent was removed in vacuo. Purification by column chromatography with n-hexane-diethyl ether (3:1) gave 9 (470 mg, 86.5%) as an oil: $[\alpha]^{25}_{D} = -16.9$ ° (c 1.92, CHCl₃); IR (CHCl₃) 3470, 2926, 2855, 1699, 1477, 1366, 1258, 1173, 1094, 847 cm⁻¹; ¹H NMR (400 MHz, DMSO, 100 °C) δ 0.86 (t, 3 H, J = 6.8 Hz), 1.17–1.35 (m, 24 H), 1.43 (s, 9 H), 1.45 (s, 3 H), 1.50 (s, 3 H), 1.62-1.71 (m, 1 H), 1.78-1.87 (m, 1 H), 3.27-3.33 (m, 1 H), 3.82-3.87 (m, 1 H), 3.85 (dd, 2 H, J = 6.3, 8.8 Hz), 4.02-4.07 (m, 1 H), 4.22 (dd, 1 H, J = 2.0, 8.8 Hz), 5.03 (d, 1 H, J = 5.4 Hz, exchanged with D₂O), 7.2–7.24 (m, 3 H), 7.55–7.59 (m, 2 H). HRMS (FAB, direct) Calcd for C₃₂H₅₅NO₄Se: [M]⁺ 597.3296. Found: 597.3317 (11%). Anal. Calcd: C, 64.41; H, 9.29; N, 2.35. Found: C, 64.46; H, 9.31; N, 2.31.

N,O,O-Triacetyl-D-erythro-shingosine (13) via (2S,3S,4S)-N.O.O-Triacetyl-2-amino-4-phenylselenyloctadecane-1,3diol (11). The reaction was carried out as described above for 7 starting from 9 (400 mg, 0.67 mmol) without purification. The obtained crude product 11 was dissolved in a mixture of EtOAc-THF (2:1, 5 mL), and NaHCO₃ (160 mg, 1.9 mmol) was added to the mixture. To the solution was added slowly 30% hydrogen peroxide (0.3 mL) at 0 °C. The mixture was stirred for 30 min at 0 °C and then for 1 h at room temperature. The solution was treated with saturated aqueous $Na_2S_2O_3$ and was stirred for 30 min. The mixture was extracted with EtOAc. After drying with Na_2SO_4 , the solvent was concentrated to give 13 (190 mg, 66.6%) as a colorless solid after recrystallization from n-hexane-EtOAc: mp 106 °C (lit.^{5a} mp 105–106 °C); $[\alpha]^{25}_{D} = -13.0^{\circ}$ (c 1.0, CHCl₃) {lit.^{5a} [α]_D = -12.9° (*c* 1.0, CHCl₃)}; ¹H NMR (400 MHz, CDCl₃) δ 0.88 (t, 3 H, J = 6.8 Hz), 1.25 (brs, 22 H), 1.99 (s, 3 H), 2.07 (s, 3 H), 2.08 (s, 3 H), 2.01-2.07 (m, 2 H), 4.04 (dd, 1 H, J = 11.7, 3.9 Hz), 4.29 (dd, 1 H, J = 11.7, 6.1 Hz), 4.42 (m, 1 H), 5.28 (dd, 1 H, J = 6.4, 6.8 Hz), 5.39 (dd, 1 H, J = 7.3, 15.1 Hz), 5.64 (d, 1 H, J = 8.8 Hz), 5.79 (dt, 1 H, J = 15.1, 7.3 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 14.1, 20.8, 21.1, 22.7, 23.3, 28.9, 29.2, 29.3, 29.4, 29.6, 29.6, 31.9, 32.3, 50.6, 62.6, 73.8, 124.1, 137.5, 169.7, 170.0, 171.0. MS (FAB, direct) Calcd for C₂₄H₄₃-NO₅: [M + H]⁺ 426.3. Found: 426.4 (38%).

(2.5,3.5,4.R-2-[(*tert*-Butoxycarbonyl)amino]-1,2-0,N-isopropylideneoctadecane-1,3,4-triol (15). A solution of Nmethylmorpholine N-oxide hydrate (50% in water, 320 mg) and acetone (3 mL) was treated with osmium tetroxide (12.7 mg, 0.05 mmol) in *tert*-butyl alcohol (3 mL). After 15 min at room temperature, 2 (500 mg, 1.22 mmol) in acetone (2 mL) was added dropwise to the solution. After stirring the mixture for 1 day at room temperature, the solution was treated with saturated aqueous $Na_2S_2O_3$ and was stirred for 30 min. The mixture was extracted with EtOAc. After drying with Na_2SO_4 , the solvent was concentrated and the residue was purified by column chromatography with *n*-hexane–EtOAc (3:1) to give **15** (300 mg, 55.4%) and the (2*S*,3*R*,4*S*)-isomer **16** (100 mg, 18.5%) as solids, respectively.

Compound 15: mp 55 °C; $[\alpha]^{25}_{D} = -5.36^{\circ}$ (*c* 2.0, CHCl₃); IR (KBr) 3412, 2957, 2851, 1688, 1472, 1402, 1366, 1261, 1186, 1111, 1069, 1042, 853 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆, 130 °C) δ 0.88 (t, 3 H, *J* = 6.8 Hz), 1.28 (s, 24 H), 1.45 (s, 12 H), 1.51 (s, 3 H), 1.41–1.58 (m, 2 H), 3.34–3.38 (m, 1 H), 3.74 (m, 1 H), 3.80 (d, 1 H, *J* = 5.9 Hz, exchanged with D₂O), 3.84 (dd, 1 H, *J* = 6.8, 3.4, 8.8 Hz), 3.88 (d, 1 H, *J* = 6.3 Hz, exchanged with D₂O), 4.04 (dt, 1 H, *J* = 6.8, 3.4 Hz), 4.10 (dd, *J* = 3.4, 8.3 Hz). HRMS (FAB, direct) Calcd for C₂₆H₅₁NO₅: [M + H]⁺ 458.3845. Found: 458.3841 (17%). Anal. Calcd: C, 68.23; H, 11.23; N, 3.06. Found: C, 67.94; H, 11.25; N, 3.02.

Compound 16: mp 38–39 °C; $[\alpha]^{25}_{D} = -30.3^{\circ}$ (*c* 2.0, CHCl₃); IR (KBr) 3464, 2920, 2853, 1678, 1472, 1396, 1366, 1248, 1171, 1105, 1074, 1059, 1043, 890 cm⁻¹; ¹H NMR (400 MHz, DMSO*d*₆, 130 °C) δ 0.88 (t, 3 H, *J* = 6.8 Hz), 1.28 (s, 24 H), 1.46 (s, 12 H), 1.53 (s, 3 H), 1.45–1.65 (m, 2 H), 3.33–3.37 (m, 2 H), 3.76 (d, 1 H, *J* = 6.3 Hz, exchanged with D₂O), 3.89–3.96 (m, 3 H, exchanged with D₂O), 4.04–4.07 (m, 1 H). HRMS (FAB, direct) Calcd for C₂₆H₅₁NO₅: $[M + H]^+$ 458.3845. Found: 458.3835 (11%). Anal. Calcd: C, 68.23; H, 11.23; N, 3.06. Found: C, 68.16; H, 11.23; N, 3.16.

N,O,O,O-Tetraacetyl-D-*ribo*-phytosphingosine (17). The reaction was carried out as described above for 7, starting from 15 (140 mg, 0.31 mmol). Purification by column chromatography with *n*-hexane–EtOAc (5:1) gave 17 (110 mg, 73.1%) as a solid; mp 46 °C (lit.^{7c} mp 48 °C); $[\alpha]^{25}_{D} = +26.2^{\circ}$ (*c* 2.0, CHCl₃) {lit.^{7c} $[\alpha]^{20}_{D} = +26.3^{\circ}$ (*c* 2.0, CHCl₃)}; ¹H NMR (400 MHz, CDCl₃) δ 0.86 (t, 3 H, J = 7.2 Hz), 1.23 (s, 24 H), 1.63 (brs, 2 H), 2.01 (s, 3 H), 2.03 (s, 6 H), 2.06 (s, 3 H), 3.98 (dd, 1 H, J = 11.7, 2.9 Hz), 4.26 (dd, 1 H, J = 11.2, 5.9 Hz), 4.42–4.48 (m, 1 H), 4.91 (dt, 1 H, J = 9.6, 2.9 Hz), 5.09 (dd, 1 H, J = 8.3, 2.9 Hz), 6.16 (d, 1 H, J = 9.3 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 14.1, 20.7, 21.0, 22.6, 23.2, 25.4, 28.0, 29.2, 29.3, 29.4, 29.5, 29.6, 31.9, 47.5, 62.8, 71.8, 72.9, 169.8, 170.1, 170.8, 171.1; MS (FAB, direct) Calcd for C₂₆H₄₇NO₇: $[M + H]^+$ 486.3. Found: 486.4 (75%).

N,O,O,O-Tetraacetyl-L-*arabino*-phytosphingosine (18). The reaction was carried out as described above for **7**, starting from **16** (90 mg, 0.20 mmol). Purification by column chromatography with *n*-hexane–EtOAc (5:1) gave **18** (50 mg, 52.3%) as a solid; mp 47–48 °C; $[\alpha]^{25}_{D} = -25.1^{\circ}$ (*c* 1.5, CHCl₃); IR (KBr) 3933, 2918, 2851, 1749, 1684, 1518, 1373, 1232, 1209, 1047 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.88 (t, 3 H, J = 6.83 Hz), 1.24 (s, 24 H), 1.54 (brs, 2 H), 1.99 (s, 3 H), 2.05 (s, 3 H), 2.06 (s, 3 H), 2.11 (s, 3 H), 4.00 (d, 2 H, J = 6.4 Hz), 4.57–4.63 (m, 1 H), 5.00 (dt, 1 H, J = 4.4, 7.3 Hz), 5.19 (dd, 1 H, J = 3.2, 6.3 Hz), 5.63 (d, 1 H, J = 9.8 Hz); HRMS (FAB, direct) Calcd for C₂₆H₄₇NO₇: [M + H]⁺ 486.3431. Found: 486.3449 (53%). Anal. Calcd: C, 64.3; H, 9.75; N, 2.88. Found: C, 64.21; H, 9.71; N, 2.8.

Supporting Information Available: Characterization data for all new compounds (Z)- or (E)-2, 3, 4, 6, 8, 9, 15, 16, and 18. This material is available free of charge via the Internet at http://pubs.acs.org.

JO991447X